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ABSTRACT

The first important study of fracture statistics was that of
Weibull. His work was based on the tacit assumption that only the
componcnt of stress normal to a crack plane contributes to its
fracture, and on the use of simple analytical formulas for failure
probability. Recent progress in short-term fracture includes the
use of more refined fracture criteria and a search for better dis-
tribution functions for the frequency of cracks, based on micro-
structural considerations. Use of the critical value of strain
energy releasc rate as a fracture criterion leads to improved
agrecment with experiment. Consideration is also given to the
statistics of fracture in static fatigue and in dynamic fracture.

INTRODUCTION

Ceramic materials are generally brittle, and nowinally identi-
cal specimens of a brittle material may exhibit large variations in
fracture stress, espccially if the specimens are small. When brit-
tle materials are cwployed in practical structures, the designer
must be able to assure himself of an acceptably low probability of
failure during scrvice. Typically, on the basis of laboratory data
on a limited number of specimens uniformly loaded in simple tension
or pure bending, the probability of failure must be calculated for
structural members of different sizes and shapes and under com-
pletely different loading conditions. The tool for accomplishing
this is fracture statistics.
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The first important contribution to this subject was made by
Weibull in 1939 [1,2], and his theories are still the basis for
most calculations jn this field. He exploited the analogy between
a stressed brittle structure and a loaded chain, which breaks when
the strength of its weakest link is exceeded. Before discussing
weakest link theory [WLT], it is appropriate to enquire into its
range of applicability.

Clearly, the fracture of a single fiber is similar to the
breaking of a chain. The fiber may be regarded as a linear array
of very short elements, and the fracture of any element causes
failure of the fiber as a whole. Similarly, when an isolated
crack in an elastic body is loaded normal to its plane, it will
become unstable and grow catastrophically, causing fracture. The
fracture stress of the entire body is that of the weakest crack.
On the other hand, there are many situations to which WLT does not
apply. For instance, in a bundle of fibers the first fiber fail~
ure does not ordinarily cause failurc in the bundle as a whole;
rather, failure is the result of damage accumulation. Similarly,
in some stress states (e.g. pure compressicn) a crack in an elastic
body will generally grow in a direction which results in crack
arrest. Here, also, failure is a result of progressive damage,
and WLT does not apply.

Ideally, fracture statistics should be based on a proper con-
sideration of three elements — extreme value statistics, fracture
mechanics, and material microstructure. Weibull's theory is based
almost exclusively on the first element. In recent years, progress
has been made in incorporating the other two elements into weakest
link theory. The purpose of the present paper is to outline the
current status of fracture statistics and indicate some directions
of expected future progress. 1In the effort to give a clear and
concise description of the field, historical perspective has been
somewhat slighted. The primary ewmphasis is on the underlying
physical concepts rather than computational techniques. It is
hoped that those whose contributions may have been omitted or
underemphasized will understand and forgive.

WEAKEST LINK THEORY (WLT)

We first derive the fundamental equation of weakest link
theory. Let it be assumed that a stressed solid can fail due to
any of a number of independent and mutually exclusive mechanisms
or causes, each involving infinitesimal probability of failure
(APg£)5. The probability that the i'th mechanism will not cause
failure is (Ps)i = 1 - (APf)i. The overall probability of sur-
vival is the product of the individual probabilities of survival,
f1.e.,




Pg = IJ,LI (Ps)i 3 1141 n (Apf)i}
s?me(M”Jﬂw[~§(de . M

The sum of the individual probabilities of failurc appearing in the
final equality above was called by Weibull the "risk of rupture"
and was given the symbol B.

In evaluating B, Weibull added together the probabilities of
failure of all the elements of volume AV in the entire body. The
probability of failure of the i'th element AV, in simple tension
o, for example, is .

(APf). = n(o) AVi 5 (2)
i

where n(o) is the number of flaws per unit volumewith a strength
less than 0. If n(cg) is less than unity, it can be regarded as the
probability that such a flaw will occur in a unit volume. Thus,
the probability of failure is given by

Pf =] - PS =1 - exp [-de n(O)] : 3)
For a uniformly stressed body

Pf(o) =1-exp[-Vn(] , (4)
or

P ) (5)

n(0) = S

< |+

1f Pf(o) is determincd by testing a number of specimens in simple
tension, Eq. (5) can be used to obtain n(0) and Eq. (3) can then be
used to evaluate the probability of failure of a body of arbitrary
size and shape and nonuniformly distributed tensile stress. By
assuming, as Weibull did, that compressive stresses do not contrib-
ute to fracture, the above procedure can also be used to calculate
the probability of failure in pure bending, or indecd any combina-
tion of uniaxial teasion and compression. A limitation to this
procedure is that in ignoring fracture due to compression, it does
not adequately account for failure in all stress states.




Weibull also gave a procedure for calculating Pf for polyaxial
stress states when the failure statistics for simple tension are
known. Basically, his procedure is to calculate B by averaging
the tensile stress in all directions [1,3]. This is intuitively
plausible, but not rigorous, and it has been questioned by some
investigators. Barnett et al. [4] have formulated a number of
alternative procedures they considered equally plausible. Presum-
ably, in part at least, because of doubts concerning Weibull's
procedure, some investigators [5,6,7] have cliosen to use an
approximation in which it is assumed that with respect to fracture,
the principal stresses act independently, i.e

P (0, 0,, 03) = P.(0)) P(0,) Plo,) - (6)

where 01, 02, 0, are the principal stresses.

There is some evidence that Weibull had second thoughts con-
cerning the validity of his recommended procedure, since he wrote
in 1966 [8]: "Another problem of a more theoretical nature will be
to deduce the effect of bi- and triaxiality on the distribution
functions of one-dimensional stresses. If the principal stresses
are acting independcently of each other, and it seems that such
materials may exist, then the problem may be soluble along lines
previously sketched. In other cases the solution is very intricate
and will certainly require close examination of the physical
behavior of the material in question."

WLT FOR POLYAXIAL STRESS CONDITIONS

To put weakest link theory for polyaxial stress states on a
firm physical foundation, we will make the explicit assumption that
the flaws responsible for fracture are microcracks in the material.
We will further assume that the cracks do not interact, and that
each crack has a critical stress O¢ defined as the remote tensile
stress applied normal to the crack plane which will cause fracture.
Fracture under combined stresses occurs when the effective stress
Oe acting on the crack is equal to Oc. The effective stress is
some function of the applied stresses at the location of the crack,
and its precise form depends on the fracture criterion employed.
The scarch for fracture criteria lecads us to fracture mechanics.
Before discussing particular fracture criteria, however, we formu-
late the theory of fracture statistics for an arbitrary fracture
criterion by leaving Oy unspecified.

The potential causes of failure are the individual cracks.
For purposes of analysis, it is convenient to group the cracks




according to location, the applied stress state, and crack critical
stress. We assume that the stress state varies slowly so that
within a volume element AV all cracks will be subject to the same
macroscopic stress. We also assune that the material is macro-
scopically homogencous, so that a function N(0.) can be defined as
the number of cracks per unit volume having a critical stress equal
to or less than o.. The prebability that a crack having a critical
stress in the range O¢ to Op + dUe exists in voiuume element AV is
the AV [d.\‘(oc)/doc] da,.

If such a crack is actually present, the probability that it
will fracture depends on its orientation, the stress state, and
the fracture criterion. We assume there is a solid angle Q such
that fracture of a crack will occur if and only if its normal lies
within Q. This means that if the normal lies within Q, o, > Ocs
where O, is .the effective stress corresponding to the fracture cri-
terion sclected. If the cracks are randomly oriented, the proba-
bility that a crack will fracture under the applied stress I is
Q(E,oc)/Aﬂ.

Now the probability of failure due to a crack in the critical
stress renge do. located in volume element AV is the product of the
,above probabilities, i.e.,

[ (o)) Qo)) :
(A}’f)i = AV -—('E’c——* dOc e . (7)

Substituting Eq. (7) into Eq. (1), and changing sums into integrals,
we obtain

o b aN_ @ :
PS = exp [-— de fdoc doc lm] . (8)

We note in passing that N(0.) is independent of stress state
and depends only on the material. Also, since o0c is defined as
the stress which causes fracture when applied normal to the crack
plane, N(0c) can be converted directly into crack size distribution
when Kjec is known. In these respects it differs from Weibull's n
and the g(S) of McClintock and others [9,10,11]. These functions
represent the number of cracks per unit volume that will be frac-
tured by a pavticular applied stress state, and derfvative of such
a function respectively, and they depend on the stress ratio. For
the particular case of hydrostatic tension, N(0) = n(o)and N} (o) =
g(0), because then Q = 47 or zero depending on the stress level.




In simple tension and equibiaxial tension, analytical expres-
sions can be found for @ for some fracture criteria, at least, and
used together with Eq. (3) to evaluate Pg. In the general case,
we find @ by integrating dQ over the range in which Oe > Oc. One
way of accowplishing this is to integrate cver the entire angular
range but include a suitable operator H in the integral:

T . dN
PS = exp [—_[[ dv dQ dcc H(Oc,oc) do ] ’ (9

(o

where

H(o ,0 1 whe
(e,c) len 0 > 0,

]

0 where 0, < 0, y (10)

wow carry out the integral over UC first, with the result

By = exp [— ]f av dQ N(oe)] : (11)

The effective stress causing fracture is a function of both
the component of stress normal to the crack plane, O s and the
shear stress T parallel to the crack plane. An approximation fre-
quently employed is the assumption that the cracks are shear-
insensitive, i.e., that g, = 0,. Using this approximation,

Eq. (11) becomes equivalent to Weibull's rule for polyaxial stress
states [l], and Eq. (8) reduces to the equation of Batdorf and
Crose [12]. Eq. (8) and Eq. (11) are equivalent formulations of
the same theory. The physical justification of the former is the
more readily apparent, but the latter is more convenient for com-
putational purposes.

RELATION TO CRIFFITH THEORY

In 1924, Griffith [13] published a theory for the fracture of
solids under biaxial stress conditions. He assumed the presence of
a large number of identical cavities in the form of nearly flat
elliptical cylinders (Griffith cracks) with their axes normal to
the plane of the stresses, but otherwise randomly oriented. He
calculated the maxinum peripheral tensile stress on the free sur-
face of such a crack as a function of crack orientation, and
assumed fracture would occur whenever this maximum value exceeded
the intrinsic strength of the material.




This fracture criterion led to the failure envelopes shovm in
Fig. 1. In the tension-tension quadrant and most of the tension-
compression quadrant, failure obeys a maximum tensile stress cri-
terion. Fracturc initiates in a crack whosc plane is normal to the
largest principal tensile stress. Thus, only the normal stress op
acts on the crack plane, and tensile-type fractures result. In the
portion of the tension—-compression quadrant near the compression
axis, material strength is locally exceeded when the crack normal
is inclined at somewhat more than 45° to the axis of maeximum

&
5, =
{
! o
\ 1
\
}
|
-300 }
| W1T, shear-
, insensitive
‘ cracks
] WLT, shear-
/ sensitive
g ‘ cracks
5 |
- Oo /

Fig. 1. Comparison of Fracture Theories for Biaxial Stresses




tension. Here both 0, and T contribute to failure and the result-
ing oblique fracture is often called a shear-type failure.

In any crack-based statistical theory it is most unlikely that
the weakest crack will be oriented at exactly the angle of maximum
vulnerability, so Griffith's curves must be regarded as the lower
limit for fracture, i.e., they represent the countour for
Pf(0]1,02) <<< 1. A typical Pf(01,02) = 0.5 contour, for the case
of shear-insensitive cracks, is shown as a dashed curve. This
curve covers both quadrants almost completely, but does not provide
for failure due to pure compression. In the case of shear-sensitive
cracks, the entire Pf(0]1,02) = 0.5 contour predicted by WLT will
fall slightly outside of Griffith's failure envelope as shown sche-
matically in Fig. 1. For high compressive stresses, the results
differ significantly from those for shear-insensitive cracks.
However, as noted earlier, in this region WLT does not apply.

Thus, Weibull theory and the more refined theories to be discussed
later are limited to cases in which no principal compressive stress
exceeds the maximum principal tensile stress in absolute value by
more than a factor of about 3. This limitation is probably not too
serious from a practical point of view because the percent disper-
sion in fracture stress is generally much less in compression than
in tension [14,15].

CRACK DENSITY FUNCTIONS
The derivative of the crack density function, N'(o.), gives
the number of cracks per unit volume per unit range in critical
stress. One might at first be inclined to expect this function to
be Gaussian or near-Gaussian. In actuality it turns out that
Gaussian distributions are incompatible with WLT. This is readily

demonstrated as follows.

We have seen that any WLT must take the form

Pglo) = = exp [~ £(a}] ; (12)
whence

Pi(0) = - P(0) = £'(0) exp [- £(0)] : (13)
If the distribution is Gaussian,

PL(0) = Aexp[-a (0-1)] . (14)




Eq. (13) and Eq. (14) are incompatible, because if f'(0) is a con-
stant, f(0) cannot be a quadratic function. Another reason for
excluding the Gaussian distribution is that it implies a nonvanish-
ing probability of tensile failure when the applied stress is
compression.

Weibull introduced two distribution functions

P(0) = 1 - exp [- v k"] (15)

and
Pf(o) =1-exp[-Vk (0 - ou)m] (o > ou) (16a)
=0 (o < ou) . (16b)

Each may be regarded as a skewed Gaussian distribution with a
skewness, which can be either positive or negative, determined by
the value of m. The 2-parameter form allows failure to occur at
any positive value of the tensile stress, while the 3-parameter
form implies that fracture cannot occur for 0<q, .

The function Pg¢(0) is conventionally determined by conducting
N tests and numbering the observed fracture stresses 0j...oyN in
ascending order. It is then usually assumed that

17

A )
Pf(oj) 8

A more sophisticated statistical treatment [16] leads to the con-
clusion that

(0.} = (18)

The difference between Eq. (17) and Eq. (18) becomes insignificant
for large values of N and for simplicity we shall use Eq. (17).

A simple technique for determining the parameters m, o , and
k is to write Eq. (16a) in the form "

in fa (1 - pf)“ =tnVk+mn 0-0) . (19)

=1
Next, &n &n (1 - P¢) is plotted against &n (0 - 0,) for various
assumed values of 9, The value of o, adopted is that for which




the N data points most nearly lie on a straight line. The slope of
the line chosen is m, and Vk is the value of %n (1 - Pf)‘1 for

0 =0y + 1. When Weibull's 2-parameter form is used, 0 1is arbi-
trarily taken to be zero. ¥

Before passing on, we note that a least squares fit in
2n 2n (1 - Pe)-1 vs, n (0 - 0,) space is in general not a least
squares fit in P¢ vs. 0 space. Consequently, the Weibull form
found in the manner described is not the best possible fit to the
data. However, if the scatter in the data is not large, it will
be adequate for most practical purposes.

Fracture statistics are relatively simple when Weibull's

2-parameter form is used. If the probability of failure in simple
tension is

Po=1-emp VK0, (20)

then that in bending can be shown to be [1]

Pp = 1-exp[-Vkg ], (21)

where kp/kT depends on the cross section. For a rectangular cross
section

kB = kT/(Zm + 2) . (22)

Under the uniform principal stresses O
failure is given by

o] (o]
Po=l] = expf=Vkl—, —]a ™ . (23)
f o, 07/ 1

The constant k (02/01, 03/01) is an anal&tical function of the
stress ratios [17]. Many other cases are treated in [18].

1’ 02, 03; the probability of

Weibull's 3-parameter representation has a similar universal
applicability when attention is limited to uniaxial stress prob-
lems. In going from uniaxial to polyaxial stress states, however,
the functional form changes [19], i.e. it is not possible to express
both uniaxial and polyaxial stress data in the form
Pg=1-exp [-Vk (0 - 0)™]. To assist those desiring to use
Weibull's 3-parameter representation in conjunction with his theory
for polyaxial stress states, Dukes [20] has carried out parametric
calculations with the aid of a computer.

10




Weakest link theory implies a volume effect that is sometimes
misapplied. Consider, for instance, the situation illustrated
schematically in Fig. 2. Let us assume specimens were tested, so 9
we know Pg(0) over the range 0.1 2 P¢ < 0.9. The known region is
shown as a solid curve, and the dotted extension is an extrapola-
tion of the data, accomplished by assuming that the mathematical
function used to represent the test data continu2s to be valid ocut-
side the range in which it was tested. All that WLT can tell us is
that a specimen 10 times larger will have 10 times the risk of ' rup-
ture over the stress range tested. It does not answer the generally
more interesting question, what stresses correspond to

/(// WLT
dhe i
0.4
/ | /
DATA
0.2 /X 17
P, / \
0.1 / '
L
i 1“ SPECULATION
/
0.02 4
/
0. 01
1 2 4 10
g
Fig, 2, Data, WLT inference

concerning volume effect, and
speculative extrapolations,
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probabilities of failure of the larger specimen in the probability
range tested, i.e., 0.1 < Pg 2 0.9, unless the validity of the
extrapolation to lower stress levels can be established.

This raises the question whether the Weibull distribution
functions have a fundamental significance that micht justify confi-
dence in such extrapolation. Weibull made no such claim; he
regarded them only as convenient mathematical tools having wide
applicability [21]. It is true that they coincide with the third
asymptotic form of extreme value theory. However, the founders of
this theory did not assert that all distributions must approach a
limiting form, but only that if a distribution does approach a
limiting form, it must be one of the three identified in the theory
of extreme values [22,23]. Basically, the limiting form results
when a distribution can be represented as a power series. When
this happens, only the leading term need be considered for large
samples (i.e. large specimens with very many cracks). We shall
show later, however, that microstructural considerations suggest
that such a power series is not possible, and that as a result no
limiting form exists for fracture.

FRACTURE CRITERIA

The direct stress applied normal to a crack plane, 0,, results
in a very high local stress at the root of the crack, while direct
stresses in the plane of the crack do not. The shear stress T
applied parallel to the crack plane also results in very high local
stresses. Consequently, the effective stress 0 causing fracture
is a function of both o and T.

The statistical analysis of fracture is appreciably simplified,
however, by the assumption that e = Ops i.e. that the cracks are
shear-insensitive. In this case the properties of the cracks are
completely characterized by O, the remote stress normal to the
crack plane that will cause fracture. There is then no need to
specify the size or shape of the crack or Poisson's ratio. And
because any given crack is weakest when oriented normal to the
largest principal tensile stress, as pointed out in the section
"Relation to Griffith Theory,'" the approximation Og = Ogq is not a
bad one. This approximation was explicitly made by Batdorf and
Crose [24], and is implicit in Weibull's treatment of polyaxial
stress states [1].

The fracture criterion used by Griffith to take into account
the effects of shear is the assumption that fracture occurs when
the local tensile stress at some point on the crack surface
exceeds the intrinsic strength of the material. Many authors have
discussed the stress distribution around cavities of various types




under various loading conditions. For present purposes, the most
concise and general treatment is probably that of Mirandy and Paul
[25] who give an explicit formula for the maximum stress on the
surface of an ellipsoid with semiaxes a » b > c under arbitrary
applied loads. They find that

ojc

2 2
g, +\/0, +T F} : (24)

73] —

where E is an elliptic integral that depends on b/a and F is a com-
plicated function of the geometry of the crack and its orientation
relative to the shear stress. We have defined the effective stress
to be 0_ in the absence of shear, and some function of 0y and T
when shear is present. Accordingly, we conclude that for a mate-
rial containing cracks of only a single plan form (i.e. a fixed

value of b/a)
o + \/02+12F } 5 (25)
n n

Using the formulas in [25], it can be shown that for a Griffith
crack (G.C.) with its axis normal to the applied shear stress

o, + '\/oﬁ + 12 % (G.C.) . (26)

while for a penny-shaped crack (P.S.C.)
(

- | 2t 2
o, 2§0n+\/0. +T°/(1 - 0.5V)

n

1
9 * 3

=1
0'e 2

(F.8.0.) (27)

where vis Poisson's ratio. The latter, possibly less familiar
result, is also given in [26].

There are, however, grounds for doubting that maximum local
tensile stress represents an acceptable fracture criterion. Con-
sider, for instance, an ellipsoidal cavity with principal axes
a = 4b loaded in tension parallel to the c axis. The maximum local
stress occurs in the equatorial plane, and it is uniform around the
entire circumference. Thus, according to the maximum local tensile
stress criterion, all points on the equatorial belt are equally
likely to fracture and the crack should advance in all directions
in its own plane. On the other hand, the region which is above
some fixed fraction of the maximum stress is four times as wide at
the ends of the b axis as at the ends of the a axis. Thus, if
stressed volume is important, growth should start first at the ends

13




of the b axis. Similarly, the stress intensity factor is largest
at the ends of the b axis, where it is twice as large as at the
ends of the a axis. If stress intensity governs fracture, the b
axis should extend first, and the crack should circularize. It is
generally agreed that this is what actually happens.

Another fracture criterion is the assumption chat fracture
occurs when the elastic strain energy released when the crack grows
is equal to the energy stored in the newly created free surfaces,
i.e. when the strain energy release rate reaches some critical
value. The strain energy release rates are well-established for a
Griffith crack or penny-shaped crack growing in its own plane.

For the former [27]

2
o k=v % 2
G = ———ir—-[KI + KII] 5 (28)
where
E = elastic modulus
KI = gyTa (29)
KII = T T7a " (30)
Thus,
" 2 2
oe = on + T (G.C.) . (31)

For the latter [28]

2
S -v) g2, g2 I -
- E [KI T ( 2) KIII] |

where

KI ch va/n (33)

Kep =4 1 Va/m sin y/(2 - V) (34)
KIII =4 1T Ja/mcos y (1 = v)/(2 - V) ¥ (35)

The minimum value of G occurs at the points on the crack periphery
where only modes I and II are involved, and here

14




o, = \ﬂ;i +727a - 05w?  us.cy . (36)

Unfortunately, under the cowbined action of 04 and T, cracks
do not extend in their own plane so the above expressions are not
strictly correct. There is at present no consensus regarding the
proper fracture criterion for cracks extending out of their plane.
Swedlow [29] listed nearly thirty differing treatments of this sub-
ject that had appeared by 1975, and others have been proposed since
that time. We will not attempt to employ any of these theories in
this review. Instead, we will use the equations just derived not-
ing, however, that the true value of Op must be smaller than that
found for coplanar extension. That is because the lowest instabil-
ity mode is the mode that actually occurs.

Some idea of the differences between the various fracture cri-
teria discussed herein can be obtained by assuming the material
obeys the Weibull 2-parameter form [Eq. (15)], and plotting the
ratio of the risk of yupture under equibiaxial tension to that for
uniaxial tension vs. the parameter m. This is done in Fig. 3
which is adapted from [17] and [30]. The ratio is largest for
shear insensitive cracks. The remaining curves are for the cri-
“teria in Eqs. (26), (27), (31), and (36) respectively. We note
that the ratio keq bias/kuniax increases with m for all criteria,
and is smallest for the fracture criteria based on strain energy
release rate. Also included in the comparison is the assumption
that with respect to fracture, the principal stresses behave inde-
pendently. This leads to a constant ratio of 2. The comparison
suggests that for m 5 3 the independence assumption will lead to
unconservative estimates of the statistics of failure in biaxial
tension. We note in passing that for the low values of Pgf desired
in most structural applications, the failure probability ratio is
the same as the k ratio.

Experimental data on uniaxial and equibiaxial bending of alu-
mina plates were recently obtained by Sines and Giovan [30]. 1In
Fig. 4 the equibiaxial data are approximated by a Weibull
2-parameter curve. The uniaxial results were computed for shear-
insensitive cracks and also for the fracture criteria listed in
Eq. (27) and Eq. (36). As would be anticipated on the basis of the
preceding discussion, the agreement is best using Eq. (36). For
details of the analysis, see [30].

The relative merits of various fracture criteria can also be
tested in other ways. For instance, Petrovic and Mendiratta [32]
tested the variation of tensile fracture stress of controlled sur-
face cracks with crack angle. The conclusion from this experiment
is that Eqs. (31) and (36) are in reasonably good agreement with
experiment, and are the best of the criteria listed in this paper.
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WLT FOR ANISOTROPIC MATERIALS

Anisotropic brittle materials may be anisotropic with respect
to their elastic properties, their fracture properties, or both.
The elastic anisotropy will influence the stresses resulting from
a given load application, but will not directly affect the calcu-
lation of probability of failure, which depends only on the stress
state and crack distribution.

Two different approximate techniques have been proposed for
determining the fracture statistics of certain types of polygraph-
ite that are isotropic in one plane but have a lower fracture
stress in the direction normal to the plane of isotropy. In one
approach, the cracks were assumed randomly oriented, but they were
given critical stresses that varied with orientation [31]. 1In the
other, the critical stresses were assumed unaffected by orientation,
but cracks were given a preferred orientation [32]. It is likely
that there is actually both a preferred orientation and a variation
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in crack strength with orientation, but a theory incorporating both
would be considerably more complex and not really needed, at least
for graphite. Both theories that attribute the entire anisotropy
to only one effect appear to be in satisfactory agreement with the
available data.

WLT FOR SURFACE DISTRIBUTED CRACKS

In his first paper on the statistics of fracture, Weibull
included a discussion of surface-distributed flaws [1]. 1In this
treatment, the only change was to replace B = S nj(0) dV by
B = j’nz(c) dA where A represents area, and np might or might not
be the same as nj. Thus the analogy to the theory for volume dis-
tribution flaws is very close.

In a more recent analysis the fracture statistics of surface
distributed cracks have been worked out on the assumption that crack
planes are always normal to the material surface [35]. As a result,
the orientation of a crack is specified by a single angle, whereas
for volume distributed cracks two angles are required. The
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analogue to Eq. (8) applicable to surface distributed cracks of the
type under discussion is

W dN
P_ = exp [—[ dA do_ 3 21?‘;] (37)

A rather surprising relation exists between the fracture sta-
tistics for volume distributed cracks and the fracture statistics
for surface distributed cracks. Let us assume that uniaxial data
are used to determine the fracture statistics for specimens in
uniform biaxial tension. It has been shown [36] that the result
is the same for both theories, i.e., it does not matter whether we
use Eq. (8) or Eqg. (37). This is quite a convenience for those who
like to do their own calculating. Finding the biaxial stress sta-
tistics for Weibull's 3-parameter form using Eq. (8) generally
requires the use of a large digital computer. But using Eq. (37)
the solution can readily be found using a simple programmable hand
computer such as the HP-25 or SR-56.

There are materials having surface distributed cracks but no
interior cracks, e.g. glass, but probably no materials with volume
‘distributed cracks, but no surface cracks. It is known from frac-
ture mechanics that a crack near the surface is generally weaker
than an identical crack far from the surface. This complicates the
interpretation of laboratory data on small specimens and the appli-
cation of the results to larger specimens. It becomes necessary to
separate out the surface and volume contributions to the fracture
statistics. An analysis of this type has recently been carried
out by Rebholz and Teter [37].

MICROSTRUCTURAL CONSIDERATIONS

So far our discussion of fracture statistics has been based
on a combination of extreme value theory and fracture mechanics.
The crack density function had to be inferred from test data, and
it was pointed out that extrapolation of this function to stresses
outside the region bounded by the highest and lowest observed frac-
ture stresses is unwarranted. Thus without additional sources of
information it is not possible to obtain reliable estimates of the
fracture behavior of very much larger specimens or the stresses at
which extremely low probabilities of failure can be assured.

To resolve this difficulty, McClintock (23] recently proposed
a theory for the crack density function based on microstructural
considerations. He assumed that cracks are random aggregations of
imperfectly bonded pairs of grains. If the probability that two
adjacent grains are unbonded is q, the probability that two such
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unbonded pairs are side by side is qz, etc. In this manner the
statistics of crack size can be found, and using the value of the
critical stress intensity factor for the material this can be con-
verted into statistics of critical stress. From this in turn one
can obtain the statistics of failure. The material model employed
by McClintock was a 2-dimensional one in which all grains were
identical rectangles and all cracks were normal to the applied ten-
sile stress. It was shown that the probability of a crack being
longer than a is exp [- a/A], and that the resulting fracture sta-
tistics do not approach an asymptotic form for large specimens.

This theory was similar in many ways to one published earlier
by Fisher and Holloman [38]. These authors considered randomly
oriented, penny-shaped cracks in a 3-dimensional elastic solid.
They made the judgmentally-based assumption that the probability
of a crack having a radius larger than r is exp [- r/\A]. Using this
size distribution they used fracture mechanics to obtain a critical
stress distribution. Employing the assumption g¢ = gp, they then
worked out the fracture statistics. The relation of their work to
Weibull's and other WLT's escaped general attention because they
retained the binomial form in their calculations rather than con-
verting to exponentials [see Eq. (1)].

Batdorf [39] applied the McClintock concept of the origin of
cracks to a consideration of randomly oriented penny-shaped cracks
in a 3-dimensional polycrystal. He found that the probability of
a crack having a radius greater than r is exp [- r2/A2]. The frac-
ture criterion employed was that expressed in Eq. (31).

Among the principal findings of this theory are the following:

(1) The total number of cracks is finite rather than infinite
as in Weibull theory. The most probable critical stress is s, = 1
where s is a reduced stress to be discussed later. Weibull's 2-
and 3-parameter forms imply that the number of cracks with a given
fracture stress increases monotonically with stress; thus the most
probable fracture stress is infinity.

(2) The probability of failure in simple tension is given by

S
o]

5 Sc\ 4 4
Pf(s) =1-exp |- NOV j- 1 - — ;3 exp (- l/sc) d s, (38)
c

where N,V is the total number of cracks. For a sufficiently small
probability of failure
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Pf(s) = (NV0/4)s4 exp (- l/sA) (39)

(3) Examining Eq. (39) we see that Pg(s) = 0 for s = 0, and
Pg(s) > O when s > 0. However, Pf(s) cannot be expressed as a
power series in s because at s = 0, P¢ and all its derivatives
vanish. It turns out that over a finite range of P¢ such as
0.01 = P¢ = 0.99, the prediction of this theory can be fitted
very closely using Weibull's 3-parameter form. However, m and Oy
are both very weak functions of the volume instead of being volume
independent as in Weibull theory. There is some experimental con-
firmation of the predicted direction of change of Weibull param-
eters with volume change [39].

(4) The reduced stress is related to the actual stress
through the equation .

0.25
0.25 3 -1 5
5 = 2 OAO /KIC ™ [ﬂ.n (q )} (40)

where
Ao is grain cross sectional area
KIc is the critical stress infinity factor for mode I

q is the probability that adjacent grains will be unbonded.

Knowledge of how the fracture statistics depend on grain size,
effectiveness of intergranular bonding, and critical stress inten-
sity factor should be very helpful in determining what changes in
processing variables will effect desired improvements in material
properties. Results qualitatively similar to those just discussed
are obtained with McClintock's theory and that of Fisher and
Holloman, except that the latter considered only a structureless
elastic solid, and therefore contained no analogue to Eq. (40).

More recently McClintock has refined his 2-dimensional model
by using regular hexagons for grains and assuming grain boundaries
have a Weibull-type strength distribution [40]. Such a model
assumes no cracks are present initially, but as the load increases,
cracks are created, grow, coalesce, and eventually cause the load
capacity of the specimen to pass its peak and decline.

Another theory in which cracks are created by the loading pro-
cess has been devised for polygraphites (41]. This theory is based
on a consideration of the low tensile strength of a graphite crys-
tal in the c-direction. The grains are assumed to be randomly
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oriented, so that here and there a chance aggregation of grains of
nearly the same orientation are arrayed in the shape of a penny.
Such an array opens up and acts like a crack when the applied
stress exceeds the capacity of all of its constituent grains.

Two-dimensional models are generally of qualitative rather
than quantitative value, but they help guide our thinking. Three-
dimensional models are obviously preferable in principle, but
their complexity requires greater development time and effort. At
present, simplifying assumptions are used whose influence on the
accuracy of predictions is somewhat uncertain. However, statistical
theories of fracture incorporating extreme value theory, fracture
mechanics and microstructural considerations are as yet in their
infancy. The present writer believes that such theories offer the
greatest long range promise for future progress.

STATIC FATIGUE

Up to this point we have discussed primarily idealized short
term brittle fracture in which preexisting cracks are unaffected
by increasing stress until their strength is exceeded, at which
time they expand suddenly and fracture the specimen or structural
part. Some attention was devoted to situations in which cracks
are created and grow as the stress increases. We now consider
fracture resulting from subcritical crack growth — slow growth of
cracks with passage of time, even at constant stress. Whereas the
objective in short-term fracture is to predict the probability of
failure in a given stress state, in static fatigue it is to predict
the time to reach a given probability of failure when the stress
state is specified.

It has been determined by a number of investigators conduct-
ing mode I crack propagation studies that for a given system
[material, temperature, environment, etc.] there is a unique rela-
tionship between crack velocity and the crack tip intensity factor
K; [42,43]. This is usually expressed in the form

v=AK (41)
1f a is the crack length
v = da/dt (42)
and
K, oY /: (43)




where Y is a geometrical factor. Combining these relations with
Eq. (41) it is readily shown [44] that the time to failure is
given by

T =2 [Kﬁ“ - K‘i;“] [(n -2 o AYz] (44)

where KIi is the initial value of KI.

The problem now is how to go from a laboratory situation with
an artificial crack of prescribed size growing in mode I to the
general situation in service, in which an unknown distribution of
randomly oriented natural cracks undergoes mixed mode growth in an
arbitrary stress state. Such a goal has yet to be achieved. 1In
fact it is teyond the state of the art in fracture mechanics, since
it involves a knowledge of the growth rate and eventual critical
stress of a non-planar crack. However, significant progress is
being made.

Most theoretical work in this area depends on three basic
assumptions or limitations (1) the stress state is uniform simple
tension, (2) crack planes are assumed to be normal to the applied

‘stress both for calculating crack size and for determining crack

velocity, (3) the short-term fracture statistics are adequately
described by Weibull's 2-parameter form.

Davidge, McLarin, and Tappin [44] have used these assumptions
to develop strength-probability-time (SPT) relations. An SPT dia-
gram for alumina is shown in Fig. 5. Such a diagram can be used to
find the stress corresponding to an acceptable probability of fail-
ure during the design life of a structural element.

Evans and Wiederhorn [45] have shown how the statistics of
failure are affected by prior proof testing. The minimum time to
failure is found by noting that no crack longer than the critical
length for the proof test can be present in any of the surviving
specimens. They then use Weibull statistics and Eq. (43) to
obtain the actual distribution of crack size in the surviving speci-
mens. From this they solve for the probability of fracture as a
function of stress and time under load. Results for soda-lime
glass in water are shown in Fig. 6. The comparison between theory
and experiment suggests that the former may be conservative by
between a half and a whole order of magnitude. Discrepancies of
this sort may be due in part to errors in determining material
parameters and propagation constants. The manner in which these
affect the statistics of fracture in static fatigue have recently
been analyzed in some detail (46,47].
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DYNAMIC FRACTURE

In dynamic fracture studies, an intense stress pulse of very
short duration passes through the material. Many cracks grow.
After passage of the stress wave, the specimen may still be in one
piece but in damaged condition, or it may be fragmented into a few
or many pieces.

In treating internal crack damage, Curran, Shockey and Seaman
[47,48] have developed a fracture model that takes into account
three aspects of the fracture process not usually included in treat-
ments of short-term fracture: (a) nucleation of cracks as a func-
tion of stress; (b) growth of cracks as a function of stress, time,
fracture toughness, and initial crack size; (c) decrease in
strength and stress attenuation with increasing damage.

The nucleation rate is assumed to have the form

N = N exp [(o - ono)/gl] (45)

where 0,, is the threshold stress for nucleation, and N_ and 0, are
constants. The cracks are assumed to be nucleated with a distribu-
tion of radii given by
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AN(x) = AN_ exp [- r/rl] (46)

where AN, is the total number/cm3 nucleated in the time interval t
to t + At, AN is the number having a radius greater thaan r, and r

is a constant. The growth of cracks was tested in many ways, :
the most successful being the assumption that
r=r (0~ ogo)/lon 47)

where n is the crack tip viscosity. The threshold stress for crack
growth is assumed to be given by

S ™ 0.5 Ky, n/r (48)

where KIc is the plane strain fracture toughness.
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As the stress wave progresses through a material, energy 1is
extracted in creating and enlarging cracks, so the pulse is atten-
uated. The calculation of the number and size of cracks as a
function of time and location, their effects on the stiffness and
damping of the material, and the effects of these in turn on the
stress pulse propagation is a strongly coupled and involved process
requiring a computer code. Accordingly we must expect to be limi-
ted to numerical results for the particular cases chosen for
investigation. However the number and size distributions of
cracks in damaged specimens and fragment size in fragmented speci-
mens are in reasonable agreement with experiment.

In the case of extremely short stress pulses the diffraction
of the wave by cracks and delay times in the initiation of crack
growth become important. These and other refinements in the theory
have been discussed by Kalphoff and Seaman [50] and by Vardar and
Finnie [51].

CONCLUDING DISCUSSION

It appears from the foregoing that Weibull's theory for uni-
axial stress states is essentially correct as it stands, except
for the limitations that it applies only to tensile type fractures,
and that caution must be exercised in making predictions implying a
knowledge of n(0) outside of the stress range in which it has been
established by experiment. We have shown that Weibull's treatment
of polyaxial stress states implies the assumption that cracks are

shear insensitive, i.e., Og = 0,. Eqs. (8) and (11) allow for the
use of arbitrarily chosen fracture criteria in analyzing polyaxial
Stress states. Present evidence suggests that Eq.(31) is somewhere
near right, and leads to better results than either Weibull theory
or the assumption of independence of principal stresses. More re-
search 1s needed, however, in the areas of crack interaction and
shear-type fractures, where weakest link theory does not apply.

Theories including due consideration of extreme value theory,
fracture mechanics and material microstructure kave only recently
been introduced into the literature. Although complex, they offer
the greatest long range promise and should be developed much more
completely.

Much progress has recently been made in the statistical treat-
ment of static fatigue, including the effects of proof testing.
The accuracy of predictions is impaired somewhat, however, by the
tacit assumption that the critical crack is normal to the applied
stress. Also little has been done to analyze time to failure
under polyaxial stress conditions.
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In dynamic fracture, considerable success has been achieved
in accounting for experimental data on crack damage and fragmenta~
tion in the case of materials that have been studied fairly thor-
oughly. There are so many material parameters, however, that opti-
mizing their values to match theory to experiments involving all
of them simultaneously may not result in reliable values for each
parameter. This in turn makes transfer of the knowledge gained to
untested materials difficult.

We conclude from all this that a lot of progress has been
made in statistical theory of fracture, and that useful techniques
exist to guide designers in their consideration of short-term,
long duration, and dynamic fracture conditions. It is also evident
that a lot of work remains to be done.
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